Progress on Roman and Weakly Connected Roman Graphs
نویسندگان
چکیده
A graph G for which γR(G)=2γ(G) is the Roman graph, and if γRwc(G)=2γwc(G), then weakly connected graph. In this paper, we show that decision problem of whether a bipartite co-NP-hard problem. Next, prove similar results graphs. We also study trees improving result M.A. Henning’s characterization trees, Discuss. Math. Graph Theory 22 (2002). Moreover, give trees.
منابع مشابه
Roman Domination on Graphs
Recent articles by ReVelle [20, 21] in the Johns Hopkins Magazines suggested a new variation of domination called Roman domination, see also [22] for an integer programming formulation of the problem. Since then, there have been several articles on Roman domination and its variations [2, 3, 4, 5, 6, 11, 12, 14, 15, 16, 18, 24, 23, 25]. Emperor Constantine had the requirement that an army or leg...
متن کاملRoman domination excellent graphs: trees
A Roman dominating function (RDF) on a graph $G = (V, E)$ is a labeling $f : V rightarrow {0, 1, 2}$ suchthat every vertex with label $0$ has a neighbor with label $2$. The weight of $f$ is the value $f(V) = Sigma_{vin V} f(v)$The Roman domination number, $gamma_R(G)$, of $G$ is theminimum weight of an RDF on $G$.An RDF of minimum weight is called a $gamma_R$-function.A graph G is said to be $g...
متن کاملRoman bondage in graphs
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) =
متن کاملRoman domination perfect graphs
A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...
متن کاملRoman domination in graphs
A Roman dominating function on a graph G = (V, E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V ) = ∑ u∈V f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2021
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math9161846